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1. Introduction

One of the intriguing aspects of supergravities are their hidden symmetries. Upon dimen-

sional reduction over a torus T d of any theory containing gravity, one would expect an

SL(d) global symmetry in four or more dimensions and SL(d + 1) in three dimensions.

These are lower-dimensional remnants of the diffeomorphisms on the internal torus. In

addition there will be generators that originate from e.g. higher-dimensional gauge symme-

tries. The surprising feature of supergravity is that these two types of symmetries combine

to form a much larger symmetry group. For instance, for maximal supergravity the global

symmetries are the exceptional groups1 E11−D in D ≥ 3 dimensions [1, 2].

1The groups and algebras of this paper are of split real form unless explicit compact notation is used.
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The phenomenon of hidden symmetries is perhaps most striking in three dimensions.

All propagating degrees of freedom can be described by scalars and, in the cases of inter-

est, these transform in a non-linear representation under a global symmetry. That is, the

bosonic sector of the theory consists of gravity (which is non-propagating in three dimen-

sions) coupled to a scalar coset G/H, where G is the global symmetry group and H is

its maximal compact subgroup. For instance, maximal supergravity in three dimensions

reduces to the coset

G

H
=

E8

SO(16)
, (1.1)

while half-maximal supergravity is given by

G

H
=

SO(8, 8 + nV)

SO(8) × SO(8 + nV)
, (1.2)

where nV corresponds to the number of vector multiplets in ten dimensions.

So far our discussion has been concerned with finite-dimensional hidden symmetries,

generated by a simple Lie algebra g. Yet more intriguing are the results and conjectures on

extended symmetries, featuring the infinite-dimensional Kac-Moody extensions of the sim-

ple g. For instance, it has been proven that the affine extension g+ appears upon reduction

to two dimensions [3 – 6]. In particular, all bosonic solutions in D = 2 form a non-linear

representation of g+. The over- and very-extensions g++ and g+++ have been conjectured

to play a role in D = 1 and D = 0, respectively [3, 7]. Finally, further conjectures have

been made about the role of the latter two Kac-Moody algebras in relation to the full

supergravity without dimensional reduction to D < 2, see [8 – 10] and [11 – 13] respectively.

We will not be concerned with the dynamical realisation of the Kac-Moody symmetries

according to these different proposals. Instead, we will focus on a necessary requirement

for these conjectures to work: the algebraic correspondence between bosonic supergravity

fields and a well-defined truncation of the Kac-Moody generators, and we focus on the

very-extended algebras.2 This matching has been performed for the physical degrees of

freedom of many supergravities, see e.g. [14 – 17].

This correspondence can be extended to non-propagating supergravity fields. More

concretely, many supergravities allow for the introduction of certain (D − 1)- and D-form

potentials. The former can be seen as the duals of deformation parameters that introduce

massive deformations or gaugings to the theory. The latter can correspond to certain con-

straints that have to be imposed on the gauge parameters for consistency of the gaugings.

These non-propagating degrees of freedom will be referred to as deformation potentials and

top-form potentials, respectively. Interestingly, it was found recently that the Kac-Moody

algebra g+++ contains exactly the right generators to correspond to the deformation and

top-form potentials of maximal and half-maximal supergravity in all dimensions [18 – 20]

(see also [10, 21, 22] for earlier results in ten dimensions and [23, 24] for a detailed analysis

of the algebraic structure in the gauged case).

2Our construction of extended algebras in the semi-simple case and the analysis of their spectrum is also

valid for the over-extended case.
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In this paper we want to address the natural and interesting question to what extent

the above results hold for other supergravities as well. We will mainly be concerned with

supergravity theories that can be formulated in four or more dimensions,3 and not those

that only live in three dimensions. Nevertheless, as stressed before, it will be crucial for

our analysis to understand what the various supergravities reduce to in three dimensions.

The bosonic sector of any supergravity reduces to a scalar manifold coupled to gravity,

and different amounts of supersymmetry impose different constraints on this scalar mani-

fold [25]. In particular, the bosonic sectors of all supergravity theories with more than eight

supercharges, i.e. with N > 2, reduce to a homogeneous space G/H in three dimensions.

Examples are the maximal and half-maximal supergravities given in (1.1) and (1.2), but

this result also holds for the ‘exceptional’ supergravity theories with 10, 12, 18, 20 or 24

supercharges [26].

For theories with N ≤ 2, i.e. with eight or less real supercharges, one encounters

more general scalar manifolds than homogeneous ones. Nevertheless, the subset of theories

for which the scalar manifold is homogeneous is more tractable and still interesting, and

has proven very valuable in many applications. In particular, one can study the hidden

symmetries and ask similar questions about the corresponding Kac-Moody extensions as

discussed above in the context of maximal and half-maximal supergravity. In this paper

we will only be concerned with the theories at these ‘points of homogeneity’ in the moduli

space of N ≤ 2 theories.

Two points are important to notice in the context of this paper. The first concerns

the algebra g that is generated by the group G of isometries of the homogeneous spaces in

three dimensions. As can be read off from (1.1) and (1.2), this is always a simple algebra

for maximal and half-maximal supergravity. In fact this holds for all supergravity theories

with N > 2. A simple Lie algebra can straightforwardly be promoted to a Kac-Moody

algebra by affine, over- and very-extensions [27, 28]. In contrast, for N ≤ 2 the algebra of

isometries g is not necessarily simple but can be semi-simple as well.4 In fact, as we will

see in sections 3 and 5, it can be argued that it is generically semi-simple for homogeneous

scalar manifolds in N = 2 and N = 1 supergravities. One thus needs a proposal for

the corresponding affine, over- and very-extensions in the semi-simple case. This will be

provided in section 2.

The second point concerns the R-symmetry group, i.e. the global symmetry that rotates

the different supercharges of a supersymmetric theory. The R-symmetry groups for different

values of D and N have been summarised in table 1. It turns out that the R-symmetry

group HR of maximal supergravity coincides with the compact part of the global symmetry

group, i.e. we have HR = H. This can be checked for D = 3 using (1.1) but holds also in

higher dimensions.5 The same is true for half-maximal supergravity if one only considers

3For this reason we will adhere to four-dimensional notation for N , i.e. the number of supercharges of a

theory is 4N in any dimension.
4There are also (non-symmetric) homogeneous spaces with non-semi-simple groups of isometries, see

e.g. [29], but we will not consider these here.
5In dimensions lower than D = 3 the R-symmetry group HR of maximal supergravity is again identical

to H , though H is now infinite-dimensional [32 – 35].
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D HR with

11 1

10 SO(n1) × SO(n2) n1 + n2 = N/4

9 O(n) n = N/4

8 U(n) n = N/4

7 Sp(n) n = N/4

6 Sp(n1) × Sp(n2) n1 + n2 = N/2 (n1,2 ≤ 2)

5 Sp(n) n = N/2

4 U(n) n = N
3 SO(n) n = 2N

Table 1: The R-symmetry groups of supergravities for various values ofD and N , adapted from [30,

31], and where Sp(n) denotes the compact symplectic group of dimension n(2n+1) (sometimes also

denoted in the literature as USp(2n)). In ten dimensions there are two possibilities for maximal

supergravity while in six dimensions there are two possibilities for half-maximal supergravity. In

both cases the non-chiral theory has n1 = n2 while the chiral one has n1n2 = 0.

the graviton multiplet (corresponding to nV = −7 in (1.2)). In the presence of additional

vector multiplets (or tensor multiplets in the six-dimensional chiral theory) the global

symmetry group and its compact part are larger. Again this also holds for the ‘exceptional’

supergravities. Hence for N > 2 one always has HR ⊆ H.

For N = 2, however, this is not always the case. In particular, in the absence of hyper

multiplets there is an SU(2) ⊆ HR part missing in H for all dimensions. For example,

pure N = 2 supergravity in D = 5 should have SU(2) R-symmetry but there are no scalars

giving a scalar manifold G/H with SU(2) ⊆ H. For precisely such cases there is also a

problem with the correspondence between the Kac-Moody algebra and supergravity, as

the former does not contain all the potential gaugings of the latter. In particular, the

potentials corresponding to the gaugings of SU(2) ⊆ HR in D ≤ 5 are not present in

the Kac-Moody algebra. This mismatch has been noted in [36]. In section 3 a resolution

is proposed by including an additional ‘empty’ SU(2)/SU(2) scalar manifold, such that

HR ⊆ H holds for these cases as well.6 Of course, the additional compact factor does not

introduce any physical degrees of freedom. However, we will see that the corresponding

extended semi-simple algebra does contain the possible gaugings of this compact factor,

and agrees perfectly with the results of [36].7

Summarising, the purpose of this paper is twofold:

• Firstly, we make a proposal for the extensions for semi-simple g, i.e. the analogon of

the affine, over- and very-extension of simple g. The corresponding extensions will

turn out to be quotients of certain derived Kac-Moody algebras. We will present a

6Such a factor appears in [37] but apparently has been replaced by ”1” in the subsequent literature.
7Similarly, the absence of four-forms in g++

2 led to a paradox concerning higher-order corrections to this

five-dimensional supergravity [38]. We expect our proposal to resolve this puzzle as well.
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number of arguments why these extensions are the relevant ones in the context of

supergravity.

• Secondly, we argue that the problematic case with HR 6⊆ H can be remedied by the

extension of the scalar coset with the missing compact factor. For N = 2 supergravity

without hyper multiplets this is an SU(2)/SU(2) factor. Also in the absence of hyper

multiplets one then has HR ⊆ H and g semi-simple in three dimensions. (In the

presence of hyper multiplets HR ⊆ H follows directly from the scalar manifold of the

hyper multiplets.)

The outline of this paper is as follows. In section 2 we will present a proposal for

the extensions of semi-simple Lie algebras. In section 3 these will be applied to a pair of

N = 2 supergravity examples: one with and one without hyper multiplets. In section 4

the relation of these examples to e11 is discussed. Our conclusions are presented in sec-

tion 5. In appendix A we review the supersymmetry algebra of pure N = 2 supergravity

in D = 5 and show the possibility to include certain five-forms. Some general remarks

and a particular example of N = 1 supergravity are discussed in appendix B. Finally,

appendix C contains the decomposition tables of the Kac-Moody algebras corresponding

to the supergravity examples.

2. Extensions of semi-simple Lie algebras

In this section we discuss the general problem of obtaining Kac-Moody extensions of direct

sums of finite-dimensional simple Lie algebras.

2.1 Review of the extension process for simple Lie algebras

For a complex, finite-dimensional and simple Lie algebra g there exists a standard process

of extending the Dynkin diagram by three nodes to obtain the so-called very-extension

g+++ [27, 28]. This extension process consists of three steps, where the first additional

node leads to the so-called non-twisted affine extension which we denote here as g+. The

way the affine node is attached to the Dynkin diagram of g is governed by the highest root

of g. A list of the diagrams of all non-twisted g+ can be found for example in [39]. As

a vector space g+ is isomorphic to g[[t, t−1]] ⊕ Cc ⊕ Cd, i.e. the centrally extended loop

algebra over g with spectral parameter t, central element c and derivation −t d
dt

. From the

algebraic point of view the derivation d serves to desingularize the inner product (·|·) on the

Cartan subalgebra. Since c is central it satisfies (c|h) = 0 for all Cartan generators h of the

finite-dimensional g and also (c|c) = 0. By introducing the derivation d with (d|c) = −1

this degeneracy of the inner product is alleviated.8 If g is of rank r, so that there are r

independent Cartan generators in g, the affine extension g+ has r+ 2 commuting diagonal

elements, exceeding the number of nodes of the Dynkin diagram by one. We will always

use the notation g+ in this paper to refer to the Kac-Moody algebra g[[t, t−1]] ⊕ Cc ⊕ Cd

and call it the affine version of the simple Lie algebra g.

8The elements c and d can be thought of as two independent light-cone coordinates.
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The next step in the extension process leads to the over-extension g++ and can be

thought of as giving a Dynkin-diagrammatic home to the derivation d so that the number

of nodes agrees again with the number of independent diagonal elements. In order to

ensure all the properties of d on the affine subalgebra g+ the new node has to be joined

with a single undirected line to the affine node. The resulting algebra has inner product

of Lorentzian signature on the Cartan subalgebra.9 In the last step (very-extension) one

adjoins another node with a single line to the hyperbolic node to obtain the Lorentzian

algebra g+++ [28]. As the number of Cartan subalgebra elements will be of importance

for our proposal for extending semi-simple algebras we summarize this again: For simple

g of rank r there are r + 2, r + 2 and r + 3 independent Cartan subalgebra generators

for g+, g++ and g+++, respectively. In contrast, the loop algebra g[[t, t−1]] has r Cartan

subalgebra elements.

The affine algebra g+ arises from gravity models for simple g as follows. We consider

gravity in D = 3 coupled to a G/H scalar coset, where we now assume that a real form

of g has been chosen which is the Lie algebra of G. As always, H = K(G) is the maximal

compact subgroup of G and describes the local symmetries. In the reduction to D = 2

the affine extension g+ arises as the new and larger symmetry algebra as can be shown

by considering a linear system based on g+ [5, 43]. This symmetry is commonly referred

to as Geroch symmetry [44]; the importance of the central extension and derivation were

first noticed in [45, 46]. The central element is related to the size of the non-compact two-

dimensional space-time, whereas the derivation d is related to the size of the circle used in

the reduction from D = 3 to D = 2.10 The spectral parameter t is needed to distinguish

and organise the infinity of independent auxiliary scalar fields dual to the reduced scalars

one can introduce in D = 2 (the so-called dual potentials [5, 43]).

2.2 Extending semi-simple Lie algebras

If one instead starts with a direct sum, say ga ⊕ gb of simple finite-dimensional Lie alge-

bras rather than a single simple Lie algebra, the extension process described above is not

uniquely defined any longer. The ambiguity arises already for the affine extension when

defining (ga ⊕ gb)
+. One possibility would be to define (ga ⊕ gb)

+ = g+
a ⊕ g+

b , treating

the two algebras also completely independently in the extension process. This results in

two independent central elements and two independent derivations for the two summands.

However, the loop algebra construction also suggests another possibility, namely to con-

sider (ga ⊕ gb)
+ = (ga ⊕ gb)[[t, t

−1]] ⊕ Cc ⊕ Cd. In this case there is a common spectral

parameter, a single common derivation d = −t d
dt

and a common central element. We note

that this definition does not give a Kac-Moody algebra; it is closely related to the Kac-

Moody algebra g+
a ⊕ g+

b from which it differs by having the two central charges ca and cb
as well as the two derivations da and db identified.

9In many physically interesting cases the associated Kac-Moody algebra is hyperbolic such that the BKL

limit near a space-like singularity will exhibit chaos [40 – 42].
10More precisely, in conformal gauge the D = 2 metric has as its one independent component the

conformal factor which is acted upon by symmetry transformations in the c direction. If the G/H coset

arises from the reduction of some higher dimensional model d acts on the overall size of all compact direction.

– 6 –



J
H
E
P
0
7
(
2
0
0
8
)
0
3
5

(a) Finite

&%
'$

ga

&%
'$

gb

(b) Affine

'
&

$
%g+

a
y

'
&

$
%g+

b
y

(c) Over

'
&

$
%g+

a
y

'
&

$
%g+

b
y

y
�

�
�

@
@

@

(d) Very

'
&

$
%g+

a
y

'
&

$
%g+

b
y

y
�

�
�

@
@

@ y

Figure 1: The extension process for semi-simple ga ⊕ gb in terms of Dynkin diagrams. The

marked nodes on the blobs for the affine algebras correspond to the affine nodes of the non-twisted

affine extensions of the simple ga and gb. As explained in the text the simple algebras (ga ⊕ gb)
++

and (ga ⊕ gb)
+++ are obtained from these Dynkin diagrams by taking the quotient of the derived

algebra by its center. This amounts to removing the derivation and central element present in the

Kac-Moody algebras described by these Dynkin diagrams. The affine algebra (ga⊕gb)
++ is defined

as in (2.1).

From the perspective of the connection to (super-)gravity theories the second (non

Kac-Moody) option is preferred when one repeats the arguments leading to the emergence

of the affine symmetry reviewed above. Even if g is not simple the reduction to D = 2

should still give rise to only one central element and one derivation since they have a

geometric origin. Therefore the symmetry consideration of gravity coupled to scalar cosets

leads to the second option of defining the affine extension of a semi-simple ga ⊕ gb.

For this reason we will adopt from now on the definition

(ga ⊕ gb)
+ := (ga ⊕ gb)[[t, t

−1]] ⊕ Cc⊕ Cd . (2.1)

Of course, in terms of loop algebras one has (ga ⊕ gb)[[t, t
−1]] = ga[[t, t

−1]] ⊕ gb[[t, t
−1]].

As we have stressed, equation (2.1) does not correspond to a Kac-Moody algebra but is

related to the Kac-Moody algebra g+
a ⊕ g+

b , the Dynkin diagram of which is displayed in

figure 1(b), by identifying the two central elements with each other and by identifying also

the two derivations.

Continuing to the over-extension (ga⊕gb)
++ it is natural to construct a Kac-Moody al-

gebra where the single derivation d of (2.1) is included naturally as for the simple case. Since

the derivation acts on both loop algebras ga[[t, t
−1]] and gb[[t, t

−1]] alike, the two disjoint

Dynkin diagrams should be joined via the hyperbolic node, see figure 1(c). The Cartan ele-

ment of this common hyperbolic node will act as the derivation on both loop algebras if the

link is a single line and undirected. The generalised Cartan matrix encoded by the diagram

of figure 1(c) has one zero eigenvalue which corresponds to the diagonal generator c̃ = ca−cb
in terms of the central elements ca and cb of the constituent g+

a and g+
b . The Kac-Moody

algebra g̃++ defined by figure 1(c) requires therefore a new derivation d̃ to desingularize

the inner product which is degenerate due to the presence of c̃. Furthermore, the derived

– 7 –
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algebra (g̃++)′ = [g̃++, g̃++] of the Kac-Moody algebra g̃++ is isomorphic to g̃++ without

d̃. The generator c̃ = ca − cb is central in g̃++. Taking the quotient of the derived algebra

by the center spanned by c̃ will lead to a simple, infinite-dimensional Lie-algebra [39] which

we will call the over-extension (ga ⊕ gb)
++ of the semi-simple algebra ga ⊕ gb:

(ga ⊕ gb)
++ := (g̃++)′/〈c̃〉. (2.2)

It is not a Kac-Moody algebra but differs from one, i.e. g̃++, only in the diagonal elements

in the same way that a loop algebra g[[t, t−1]] differs from the affine algebra g+. Moreover,

the quotient by the one-dimensional space spanned by c̃ = ca − cb identifies the two indi-

vidual central elements of the affine algebras g+
a and g+

b which is exactly what we argued

for on the basis of the Geroch symmetry in D = 2 gravity.

From the construction of (ga ⊕ gb)
++ it is now easy to construct the very-extension

(ga ⊕ gb)
+++ by adding another node to the Dynkin diagram. It is again understood that

(ga⊕gb)
+++ is constructed from the corresponding Kac-Moody algebra g̃+++, with Dynkin

diagram shown in figure 1(d), by removing the derivation and central element in the same

way as described above.11 By abuse of notation we will sometimes refer to the Dynkin

diagram of g̃+++ as the Dynkin diagram of (ga ⊕ gb)
+++.

There is a natural extension of our proposal to the case ga ⊕ gb ⊕ gc ⊕ . . ., consisting of

n simple factors. On general grounds there will now be n− 1 central elements c̃a = ca − cb,
c̃b = cb − cc, . . . such that again in (ga ⊕ gb ⊕ gc ⊕ . . .)++ all originally distinct central

charges are identified in agreement with the Geroch symmetry. This extends also to the

very-extended case.

The very-extended algebras (ga ⊕ gb)
+++ we construct in the fashion described above

have ra + rb + 3 diagonal elements for finite-dimensional ga and gb of rank ra and rb,

respectively. The signature of the inner product on these diagonal elements is (ra+rb+2, 1)

and therefore of Lorentzian type.12

We note that one can also use different real forms of ga and gb in this extension process,

they do not need to be in split real form. However, we demand from the symmetries of the

reduction of D = 3 gravity that the affine, over- and very-extended nodes be non-compact.

Of course, the resulting diagram then should be an allowed almost split real form of the

very-extended Kac-Moody algebra, see e.g. [47, 48]. The properly defined Weyl groups of

the quotient Lie algebras introduced in this section should be related to U-duality in low

dimensions [49].

3. Applications to N = 2 supergravity

In this section we will discuss the emergence of semi-simple Lie algebras in N = 2 super-

gravity, and analyse in detail a pair of examples of very-extended semi-simple Lie algebras.

These illustrate our proposal of the previous section and in addition will provide a number

of consistency checks.

11It can be seen that ca − cb is still central in g̃+++ and that the center is one-dimensional.
12This follows since there is an (ra + rb + 2)-dimensional space-like subspace, a one-dimensional kernel

and at least a one-dimensional time-like subspace. A dimension count then shows that the quotient by the

kernel has signature (ra + rb + 2, 1).
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3.1 General aspects

As discussed in the introduction, the N = 2 theories have the highest number of super-

charges that allow for inhomogenous scalar manifolds. Of course N = 2 supersymmetry

does impose a number of geometric restrictions on these spaces. Most importantly, the

scalar manifolds split up in two parts, parametrised by scalars of the vector13 and hyper

multiplets, respectively:

M = MV ×MH . (3.1)

Further requirements on the scalar manifold MV are dimension-dependent: it is very

special real, special Kähler and quaternionic-Kähler in D = 5, 4, 3, respectively. In D = 6

it is given by a particular homogeneous space. The scalar manifold MH is quaternionic-

Kähler in any dimension 3 ≤ D ≤ 6. See e.g. [29] and references therein for further details

on these spaces.

We will be concerned with the subset of N = 2 supergravities whose scalar manifolds

are homogeneous spaces. These have been classified in [50, 51]. In particular we are

interested in the global symmetries of these theories. From the split of scalar manifolds (3.1)

it follows that the symmetries will generically be semi-simple. Only in the absence of hyper

multiplets14 can one have a simple15 G.

Furthermore, the R-symmetry is not always contained in the compact subgroups of G

for N = 2 supergravities. This is easiest to see in three dimensions where one has only

vector and hyper multiplets. Both multiplets consist of the same fields, being four scalars

and two dilatini. They only differ in the way they transform under the R-symmetry, which

is HR = SO(4) ≃ SU(2) × SU(2): only one SU(2) factor acts on the scalars of the vector

multiplets, while the other factor only acts on the scalars of the hyper multiplets [25]. This

implies that both factors of HR will be contained in H if and only if hyper multiplets

are present as well. The same will hold for the possible uplift of these theories to higher

dimensions.

Although the reasoning is completely general and will apply to all N = 2 theories, it

may be instructive to consider specific examples of both kinds (i.e. with and without hyper

multiplets):

• Pure N = 2 supergravity in five dimensions consists of only the graviton multiplet.

Its bosonic sector comprises the graviton and a vector, while its fermions are a pair

of symplectic Majorana gravitini.

• One can couple this theory to seven hyper multiplets whose scalars parametrise an

F4/(SU(2) × Sp(3)) scalar coset.

13The vector multiplet does not comprise any scalars in six dimensions, but instead there is a tensor

multiplet which does. For simplicity we will refer to the corresponding scalar manifold as MV as well.
14We will not consider the case of only hyper multiplets as these theories only live in D = 3.
15The Kac-Moody extensions of simple algebras associated to N = 2 theories without hyper multiplets

have been discussed in [16, 17].

– 9 –



J
H
E
P
0
7
(
2
0
0
8
)
0
3
5

D HR Gpure Hpure Gcoupled Hcoupled

5 SU(2) 1 1 F4 SU(2) × Sp(3)

4 U(2) SL(2) SO(2) SL(2) × F4 U(2) × Sp(3)

3 SO(4) G2 SO(4) G2 × F4 SU(2) × SO(4) × Sp(3)

Table 2: The global symmetries G and their compact subgroups H of two five-dimensional N = 2

supergravities and their dimensional reductions. The first is the pure theory while the second is

coupled to seven hyper multiplets.

These will be referred to as the pure theory and the coupled theory, respectively. Interest-

ingly, both can be obtained as a truncation of N = 8 supergravity [37, 26, 52]. In table 2

the global symmetry group and its compact subgroup are given for these theories and their

dimensional reductions. In addition we indicate the R-symmetry group.

In line with the discussion above, the R-symmetry group is not contained in Hpure.

This is easy to see in five and four dimensions. In three dimensions one might think that

they coincide. However, the pure theory reduces to two vector multiplets (and a gravity

multiplet) in three dimensions. Only one of the SU(2) factors of HR acts on the scalars

contained in the vectors. In contrast, Hpure = SO(4) acts on all scalars of the theory.

Consequently H and HR should not be identified; only an SU(2) factor of both groups

coincide. Similarly, in four dimensions only an SO(2) factor coincides. Therefore the pure

theory always has an SU(2) factor of HR missing in all dimensions, while it has a simple

symmetry G2 in three dimensions. In contrast, the theory coupled to hyper multiplets does

have HR ⊆ Hcoupled, but has the semi-simple symmetry G2 × F4 in three dimensions.

We will first discuss the extended semi-simple Lie algebra associated with the coupled

theory before addressing the pure theory.

3.2 Very-extended g2 ⊕ f4 and the coupled theory

The Dynkin diagram of (g2 ⊕ f4)
+++ according to our general construction of section 2

can be found in figure 2.16 A regular sl(5) subalgebra has been indicated as well, whose

indices will be interpreted as space-time indices.17 The decomposition into generators of

this sl(5) with up to five space-time indices can be found in table 5 in appendix C. These

correspond to the following physical degrees of freedom (at level (l1, l2)):

• (0, 0): the traceless part of the metric, carrying 24 fields of which 10 will be eliminated

due to the local Lorentz symmetry,

• (0, 0): a scalar field which provides the trace of the metric,

• (0, 0): scalars in the adjoint of f4, subject to the local SU(2) × Sp(3) symmetry,

16Recall that (g2⊕f4)
+++ strictly speaking does not admit a Dynkin diagram, but we refer to the diagram

of the underlying Kac-Moody algebra as its Dynkin diagram.
17For more details and examples of Kac-Moody decompositions see e.g. [16].
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• (1, 0): a vector,

• (2, 0): a two-form, which is interpreted as dual to the vector,

• (3, 0): a generator with mixed symmetry properties, which is interpreted as the dual

graviton,

• (0, 1): three-forms in the adjoint of f4, which are interpreted as dual to the scalars.

The metric, vector and their duals belong to the graviton multiplet.The remaining degrees

of freedom are spanned by the scalars of the seven hyper multiplets and their duals. Note

that one finds 52 scalars transforming in the adjoint representation of f4, while there are only

28 physical scalars in the theory. However, one has to divide out by the compact subgroup of

the internal symmetry group F4, which is in this case SU(2)×Sp(3) and therefore eliminates

24 scalars. Similarly, one finds 52 three-forms which can be seen as the duals to the scalars.

We expect that supersymmetry will impose 24 linear constraints on the field strengths of

these two-forms. This reduces the number of independent three-forms to 28, which will be

related to the physical scalars via a Hodge duality relation. This is completely analogous

to the way the SL(2)/SO(2) sector of IIB supergravity appears in E11 (see e.g. [16] and

also [53, 21]). In that case the compact SO(2) subgroup eliminates one of the three scalars.

In addition there is a single linear constraint on the field strengths of the dual eight-forms

and duality relations between the remaining scalars and eight-forms [53, 21].

Since a crucial aspect of our proposal is that the relevant symmetry is the quotient of

the derived algebra of the Kac-Moody algebra given by the diagram 2 we examine the effect

of the quotient in this case in detail. The (10×10) Cartan matrix encoded in figure 2 has one

zero eigenvalue so that the associated Kac-Moody algebra must have eleven independent

Cartan generators, including one central charge c̃ and the associated derivation d̃. The

central charge c̃ is the difference of the central charges of the affine f+4 and g+
2 diagrams

contained in figure 2. The transition to the derived algebra removes d̃ and the quotient

eliminates c̃ so that the resulting algebra has only nine commuting diagonalisable elements.

This has to be compared to the number of diagonal metric components and dilaton-like

scalars in the scalar coset. In D = 5 there are five diagonal metric components and for the

F4 coset there are four dilaton-like scalars so that the numbers agree precisely.

With this understanding, indeed the above decomposition coincides exactly with the

physical degrees of freedom (and their duals) of this theory. The other generators do not

correspond to any (known) propagating degrees of freedom. Nevertheless, a subset of these

is known to play an interesting role in supergravity. These are the purely anti-symmetric

(D − 1)- and D-forms, as discussed in the introduction. In the case at hand these are

• (1, 1): four-forms in the adjoint of f4,

• (2, 1): five-forms in the adjoint of f4.

The four-forms are interpreted as dual to the gauge parameters [18, 19]. These specify the

possible embeddings of a one-dimensional gauge group in F4. In addition the very-extended
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Figure 2: (g2 ⊕ f4)
+++ decomposed as sl(5) ⊕ f4, corresponding to a D = 5 theory with an F4

internal symmetry group. The colouring in all our diagrams is such that white nodes correspond

to the non-compact gravity line whereas the grey nodes indicate the internal symmetry group. The

black nodes are the ones with respect to which the level decomposition is performed.

1 2 3 4 5

6 7 8

9 10

Figure 3: (g2 ⊕ f4)
+++ decomposed as sl(3) ⊕ g2 ⊕ f4, corresponding to a D = 3 theory with a

G2 × F4 internal symmetry group.

algebra predicts the possibility to include an f4 adjoint of space-time filling five-forms, whose

role is yet to be understood.

In addition to the previous five-dimensional perspective, we would also like to consider

the decomposition of very-extended g2⊕ f4 with respect to its sl(3) subalgebra, correspond-

ing to the theory reduced to three dimensions. The associated Dynkin diagram is given in

figure 3 while the result of the decomposition can be found in table 6. It can easily be seen

that at levels (l1, l2) = (0, 0), (0, 1) and (1, 0) one finds exactly the generators that are asso-

ciated to the physical degrees of freedom of the reduced supergravity theory. These are the

graviton and its trace, and scalars in the adjoints of g2 and f4 and their dual vectors. In ad-

dition the very-extended algebra contains the following non-propagating degrees of freedom:

• two-forms in the (g2, f4) representations (1 ⊕ 27,1) ⊕ (1,1 ⊕ 324) ⊕ (14,52),

• three-forms in the (g2, f4) representations (1⊕14⊕27⊕77,52)⊕(14,1⊕52⊕324⊕
1274).

The two-forms are in one-to-one correspondence with the components of the embedding ten-

sor that parametrise the most general gaugings of this theory [54]. Therefore the above fea-

tures are exactly what one would expect for the algebra corresponding to this D = 3 theory.

Note that in the above we have interpreted the lower branch of the Dynkin diagram 2

as corresponding to the scalar manifold of the vectors, while the upper branch corresponds
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Figure 4: (g2 ⊕ f4)
+++ decomposed as sl(6) ⊕ g2 ⊕ sl(2), corresponding to a D = 6 theory with a

G2 × SL(2) internal symmetry group.

to the hyper manifolds. In other words, we have chosen to identify

MV =
G2

SO(4)
, MH =

F4

SU(2) × Sp(3)
, (3.2)

in three dimensions. With these identifications one can only uplift to the coupled theories in

table 2. In this uplift the scalar manifold F4/(SU(2)×Sp(3)) is unaffected, while the scalar

manifold G2/SO(4) is deconstructed to yield gravity and vectors in the higher dimensions.

However, in three dimensions the vector and hyper multiplets are interchangable, and

hence one could have made identification (3.2) with MV and MH interchanged. In this

case the scalar manifold G2/SO(4) is unaffected by the uplift, while the other factor

F4/(SU(2) × Sp(3)) is deconstructed in different higher-dimensional fields. With such

identifications the higher-dimensional origin is therefore completely different. In particu-

lar, the highest dimension to which this theory can be uplifted is six, corresponding to the

sl(6) regular subalgebra of very-extended g2⊕ f4 shown in figure 4. This corresponds to the

six-dimensional chiral N = 2 supergravity that reduces to the F4/(SU(2)× Sp(3)) coset in

D = 3 [55], coupled to two hyper multiplets parametrising a G2/SO(4) scalar manifold.

We have checked that the decomposition of very-extended g2 ⊕ f4 with respect to this sl(6)

regular subalgebra, given in table 7, gives rise to the correct physical degrees of freedom.

In addition it includes the following non-propagating degrees of freedom:

• five-forms in the (sl(2), g2) representations (2⊕ 4,1) ⊕ (2,14),

• six-forms in the (sl(2), g2) representations (3 ⊕ 3 ⊕ 5,1) ⊕ (1 ⊕ 3,14).

The former should parametrise the possible gaugings of the SL(2)×G2 internal symmetry

with the SL(2) doublet of vectors.

3.3 Very-extended g2 ⊕ su(2) and the pure theory

We will now discuss the pure N = 2, D = 5 theory introduced earlier, i.e. the case without

hyper multiplets, and the corresponding very-extended algebra.

First let us address in more detail why the case without hyper multiplets, where the

R-symmetry is not contained in H, leads to a mismatch from the Kac-Moody point of view.

We will do this in the context of the D = 5 pure theory, whose physical bosonic degrees of
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Figure 5: g+++
2 decomposed as sl(5), corresponding to a D = 5 theory.

freedom reduce in three dimensions to two vector multiplets parametrising the coset

MV =
G2

SO(4)
. (3.3)

The corresponding Kac-Moody algebra is g+++
2 , whose Dynkin diagram with a regular

sl(5) subalgebra indicated is given in figure 5. The corresponding decomposition is given

in table 8 in appendix C, see also [16]. At lowest levels l we find the expected physical

degrees of freedom:

• 0: the traceless part of the metric, carrying 24 degrees of freedom of which 10 will be

eliminated due to the local Lorentz symmetry,

• 0: a scalar which provides the trace of the metric,

• 1: a vector,

• 2: a two-form, which is interpreted as dual to the vector,

• 3: a generator with mixed symmetry properties, interpreted as the dual graviton.

The other generators all have mixed symmetries and do not correspond to propagating

degrees of freedom.

For this particular theory, however, it has been explicitly calculated which gauge po-

tentials can be included, i.e. on which gauge potentials the supersymmetry algebra can be

realised [36]. In addition to the vector and its dual two-form present in g+++
2 , three- and

four-forms transforming under the R-symmetry SU(2) were found. The four-forms should

be expected: they can be seen as the potentials dual to the gauging parameters. Indeed, in

the pure theory one can gauge a U(1) group [56], whose embedding in SU(2) is described

by a triplet of parameters. However, since the original bosonic fields of the theory (i.e. the

metric, the vector and their duals) are invariant under the R-symmetry the corresponding

Kac-Moody algebra will not contain HR and hence will miss the potentials corresponding

to its gauging [57].

A clue for the resolution of this puzzle comes from the triplet of three-forms. In D = 5

these would in general be interpreted as dual to scalars, which the theory does not have and

hence would introduce additional propagating degrees of freedom. However, it was found

that, in order to realise supersymmetry on them, their field strengths necessarily vanish,

and hence they correspond to non-propagating degrees of freedom. This is similar to the

SL(2)/SO(2) coset of IIB supergravity (or the F4/(SU(2) × Sp(3)) coset of the coupled

theory considered in section 3.2). In the IIB case there was one linear constraint on the

field strengths of the (D−2)-forms, corresponding to the local SO(2) symmetry reducing the
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Figure 6: (g2 ⊕ su(2))+++ decomposed as sl(5) ⊕ su(2), corresponding to a D = 5 theory with an

SU(2) internal symmetry group. Node 1 should be taken compact (see text).

number of scalars from three to two. Therefore a natural interpretation for the three-forms

in D = 5 is as dual to an SU(2)/SU(2) coset. As this is a compact factor there are no scalars

associated to it, and the dual (D− 2)-forms are subject to three linear constraints on their

field strengths, which therefore vanish. Hence the results of [36] indicate that one should

include an SU(2)/SU(2) scalar manifold in the D = 5 pure theory (see also [37]). This does

not mix with the other fields under dimensional reduction and the resulting coset inD = 3 is

MV =
G2

SO(4)
, MH =

SU(2)

SU(2)
, (3.4)

and thus corresponds to a global semi-simple algebra g2 ⊕ su(2).

The same reasoning applies to all N = 2 theories without hyper multiplets: these have

to be extended with an additional compact SU(2)/SU(2) factor, and therefore reduce to

a semi-simple coset in three dimensions. Very-extended simple algebras like g+++
2 should

not be associated to an N = 2 theory. In the conclusions we will discuss whether they

correspond to theories with less than eight supercharges.

Let us now check whether very-extended (g2 ⊕ su(2))+++ contains the correct gener-

ators. The Dynkin diagram of this very-extended semi-simple algebra is given in figure 6

with the sl(5) regular subalgebra indicated, while the corresponding decomposition can be

found in table 9 in appendix C. The additional node 1 should be understood to give rise

to an internal SU(2) symmetry group in D = 5. Therefore the relevant real form of this

algebra is not maximally non-compact. As the largest part of this paper deals with alge-

bras of maximally non-compact, or split, real form, we prefer not introduce the additional

notation for other real forms. This can be found in e.g. [58, 17]. Instead we will indicate

the consequences of the non-split form in what follows.

A straightforward comparison between the results for (g2⊕su(2))+++ and (g2⊕f4)
+++

shows that the results are completely analogous and will therefore not be listed. In par-

ticular, one finds exactly the same generators which are mentioned in section 3.2, where

now instead of the adjoint of f4 one finds the adjoint of su(2). Note that the correspond-

ing scalars are all pure gauge since the internal symmetry is compact. In addition there

will be three linear constraints on the field strengths of the dual three-forms. In this way

one indeed recovers the correct physical field content of the graviton multiplet. Moreover,

the three- and four-forms transforming in the adjoint of su(2) coincide exactly with the

results of [36]. A puzzle arises for the five-forms, which were not discussed in [36] but are
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Figure 7: (g2 ⊕ su(2))+++ decomposed as sl(3) ⊕ g2 ⊕ su(2), corresponding to a D = 3 theory

with an G2 × SU(2) internal symmetry group. Node 1 should be taken compact (see text).

present in the very-extended algebra. This can be seen as a prediction of our proposal

for very-extended semi-simple Lie algebras. As we show in appendix A, it is indeed pos-

sible to include an SU(2)-triplet of five-forms as well, provided they have rather unusual

supersymmetry transformations. Hence this example confirms both the need to include an

SU(2)/SU(2) factor and our proposal for the extended semi-simple algebras.

Again we also consider the three-dimensional theory associated to the very-extended

algebra. The corresponding Dynkin diagram is given in figure 7 while the decomposition

can be found in table 10. It can be verified that this gives rise to the correct physical

degrees of freedom: the graviton and scalars in the adjoints of g2 and su(2), and their

duals. In addition the very-extended algebra contains the following two- and three-forms:

• two-forms in the (g2, su(2)) representations (1 ⊕ 1⊕ 27,1) ⊕ (14,3),

• three-forms in the (g2, su(2)) representations (14⊕14⊕27⊕64,1)⊕ (1⊕14⊕14⊕
27 ⊕ 77,3).

The two-forms in this algebra are in perfect agreement with the components of the embed-

ding tensor and thus with the possible gaugings [54]. This is a further confirmation of our

proposal.

Note that, in contrast to the (g2 ⊕ f4)
+++ case discussed in the previous section,

the present theory does not allow for an alternative uplift. In other words, if we would

interchange the vector and hyper multiplets in (3.4) then the theory does not allow for an

uplift to D ≥ 4. The reason is that the scalars of MV have to provide the degrees of freedom

for e.g. the metric in higher dimensions. The scalar manifold SU(2)/SU(2), however, does

not have any degrees of freedom associated to it. Therefore with this interpretation the

theory only lives in D = 3. From the point of view of the Dynkin diagram in figure 6 one

might think that there is an alternative sl(4) regular subalgebra that includes the affine

extension node of su(2), but this is not possible due to the non-split form; in the theory

of group oxidation, the sl(D) regular subalgebra is not allowed to be connected to the

compact node 1 [58].

4. Relation to E11

In this section we show that our proposal is consistent with the possibility to obtain certain

N ≤ 2 theories as truncation of the maximal theory. In particular we will focus on the
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Figure 8: e11 decomposed as sl(11), corresponding to the D = 11 maximal theory.

pure and coupled N = 2 theories, both of which have an N = 8 origin [37, 26, 52]. We

assume that maximal theories are described by an E+++
8 ≡ E11 symmetry (in split form)

and will verify that the quotients discussed in the preceding sections arise as subalgebras

of e11. In order to make the analysis rigorous we first review some facts about e11 and then

move on to proving (g2 ⊕ f4)
+++ ⊆ e11 and (g2 ⊕ su(2))+++ ⊆ e11.

4.1 e11 in sl(11) basis

The Dynkin diagram of e11 is shown in figure 8 where the exceptional node has been marked

as deleted so that there is an sl(11) gravity line corresponding to a theory in D = 11. At

level (l) the spectrum contains [11, 8]:

• (0): the traceless part of the metric, carrying 120 fields of which 55 will be eliminated

due to the local Lorentz symmetry,

• (0): a scalar which provides the trace of the metric and turning sl(11) into gl(11),

• (1): a three-form as present in D = 11 supergravity,

• (2): a six-form, which is interpreted as dual to the three-form,

• (3): a generator with mixes properties, interpreted as the dual graviton.

We will use the following notation for the generators on levels (0) and (1):

gl(11) : Ka
b , a, b = 1, . . . , 11 ,

three-form : Ea1a2a3 = E[a1a2a3] . (4.1)

They commute according to [11, 8]

[Ka
b,K

c
d] = δc

bK
a
d − δa

dK
c
d ,

[Ka
b, E

c1c2c3] = 3δ
[c1
b Ec2c3]a . (4.2)

The Lie algebra e11 is defined in terms of simple Chevalley generators ei, fi and hi for

i = 1, . . . , 11 with the relations [39]

[hi, hj ] = 0 , [ei, fj] = δijhj ,

[hi, ej ] = Aijej , [hi, fj] = −Aijfj ,

(ad ei)
1−Aijej = 0 , (ad fi)

1−Aijfj = 0 . (4.3)
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Figure 9: e11 decomposed as sl(5) ⊕ e6, corresponding to the D = 5 maximal theory with an E6

internal symmetry group.

where Aij are the entries of the Cartan matrix of e11. The generators hi and ei can be

chosen to be related to the basis we chose above by [11, 9]

hi = K13−i
13−i −K12−i

12−i (for i=2, . . . , 11) ,

h1 =−1

3

11
∑

a=1

Ka
a+K9

9+K10
10+K11

11 , (4.4)

ei = K13−i
12−i (for i=2, . . . , 11) , e1 = E9 10 11 ,

fi = K12−i
13−i (for i=2, . . . , 11) , f1 =F9 10 11 =(E9 10 11)T .

4.2 (g2 ⊕ f4)
+++ ⊂ e11

To show that (g2 ⊕ f4)
+++ as defined in section 2 is a subalgebra of e11 we exhibit defining

Chevalley generators Hi and Ei (for i = 1, . . . , 10) as combinations of e11 generators (4.4)

such that they obey the relations (4.3) but now with the Cartan matrix Aij encoded in

diagram 2. This will describe the derived algebra needed in the construction of (g2⊕f4)
+++;

the quotient by the centre will follow from the fact that the central element corresponds

to the zero element of e11 and therefore is not a linearly independent Cartan generator.

In order to obtain diagram 2 it is most convenient to also take the D = 5 version of the

e11 diagram. This is shown in figure 9, where the global E6 symmetry of the scalar manifold

of maximal ungauged supergravity in D = 5 is evident. The F4 symmetry describing the

scalar of the truncated coupled theory discussed in section 3.2 is the maximal subgroup

F4 ⊂ E6 whose defining Lie algebra generators we will give explicitly below. In addition

we need to find an F4 singlet vector generator which gives node 6 of diagram 2 and an F4

adjoint three-form which gives node 5 of that diagram.

The correct choices for the Cartan generators are

H10 = h11 , H9 = h10 , H8 = h9 , H7 = h8 , (4.5)

since the gravity generators are common in both theories,

H4 = h1 , H3 = h4 , H2 = h3 + h5 , H1 = h2 + h6 , (4.6)
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since this is the correct embedding of f4 ⊂ e6 and

H6 = 3h7 + 4h6 + 5h5 + 6h4 + 4h3 + 2h2 + 3h1

= −K1
1 −K2

2 −K3
3 −K4

4 + 2K5
5 ,

H5 = h9 + 2h8 + 3h7 + 3h6 + 3h5 + 3h4 + 2h3 + h2 + h1

= −1

3

11
∑

a=1

Ka
a +K3

3 +K4
4 +K5

5 (4.7)

for the connecting nodes. This choice becomes clearer with the expression for the simple

positive step operators

E10 = e11 , E9 = e10 , E8 = e9 , E7 = e8 , (4.8)

again since the gravity sectors are common in both theories,

E4 =e1 , E3 =e4 , E2 =e3+e5 =K7
8+K9

10 , E1 =e2+e6 =K6
7+K10

11 , (4.9)

from the embedding of f4 ⊂ e6 and

E6 = E5 6 11 −E5 7 10 + E5 8 9 ,

E5 = E3 4 5 . (4.10)

The generators Fi are the transposes of the Ei given here.

With the formulæ (4.5)–(4.10) one verifies the relations (4.3), for example

[H6, E6] = 2E6 , [H7, E6] = −E6 , [H6, E7] = −3E7 , etc. (4.11)

For the verification of the Serre relations it is useful to notice that all simple step operators

belong sl(2) subalgebras and the computations can be shortened by using the representation

theory of sl(2); otherwise some of the Serre relations involve e11 commutators up to sl(11)

level l = 5 which exceeds the level to which the relations have been worked out.18

An important observation regarding the new Cartan generators Hi of (4.5)–(4.7) is

that they are not all linearly independent: The combinations

cg2
= H6 + 2H7 +H8

= h9 + 2h8 + 3h7 + 4h6 + 5h5 + 6h4 + 4h3 + 2h2 + 3h3 ,

cf4 = H1 + 2H2 + 3H3 + 2H4 +H5

= h9 + 2h8 + 3h7 + 4h6 + 5h5 + 6h4 + 4h3 + 2h2 + 3h3 (4.12)

are identical so that cg2
− cf4 = 0.19 The combinations above were chosen because cg2

is

the central charge of g+
2 and cf4 that of f+4 contained in the diagram. Therefore, cg2

− cf4 is

precisely the combination that has to be quotiented out of the abstract (derived) algebra

generated by Hi, Ei and Fi according to our definition of section 2. This is realised here

18The highest known commutators for e10 involve level l = 4 [59].
19We note also that both are identical to the central element of e+8 ⊂ e11.
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automatically in e11 since this combination corresponds to the zero element in e11. Hence

we have shown that the quotient Lie algebra (g2⊕f4)
+++ is a subalgebra of the Kac-Moody

algebra e11.Therefore any E11 invariant dynamics describing D = 11 supergravity (or an

extension thereof) would entail a consistent truncation to the N = 2 theory with seven

hypermultiplets invariant under the algebra described in section 3.2.

The definitions (4.5)–(4.10) also show the D = 11 origin of the fields of the N = 2

model in D = 5: The vector of the gravity multiplet corresponds to the F4 invariant

combination of the 27 vector fields one obtains from the three-form of D = 11, whereas

the scalars are obtained by the truncation of the E6 scalar coset to the F4 scalar coset.

4.3 (g2 ⊕ su(2))+++ ⊂ e11

Here we show that the quotient algebra (g2⊕su(2))+++, which was discussed in section 3.3

in relation to pure and simple N = 2 supergravity in D = 5, is a subalgebra of e11. This

can be seen most easily by using the result of the preceding section that (f4 ⊕ g2)
+++ is a

subalgebra of e11 and embedding (g2 ⊕ su(2))+++ in (f4 ⊕ g2)
+++.

We recall that the local part of the internal symmetries of the coupled theory is Sp(3)×
SU(2), the compact subgroup of F4 (in split form). The SU(2) factor is the R-symmetry

group in D = 5. It is natural to decompose all f4 representations, which appear in the level

decomposition of (f4 ⊕ g2)
+++, under sp(3) ⊕ su(2). Inspection of table 5 shows that the

only f4 representations occurring for fields with at most five space-time indices are the 1

and the 52 of f4. They decompose as

1 → (1,1)

52 → (1,3) ⊕ (14s,2) ⊕ (21,1) (4.13)

under sp(3) ⊕ su(2) ⊂ f4. The restriction to sp(3) singlets leaves only su(2) singlets and

triplets. Performing this restriction to sp(3) invariant generators within (f4 ⊕ g2)
+++ on

the first levels yields precisely the fields with at most five space-time indices transforming

under su(2) as those of table 9, which lists the lowest levels of (g2⊕ su(2))+++ decomposed

with respect to sl(5) ⊕ su(2).

The restriction to sp(3) invariant states in (f4 ⊕ g2)
+++ defines a subalgebra s. Since

the fundamental generators of (g2 ⊕ su(2))+++ on levels (0, 1) and (1, 0) are contained in

this subalgebra, we deduce that (g2 ⊕ su(2))+++ ⊂ (f4 ⊕ g2)
+++ ⊂ e11.

20 The embedding

into e11 could also be carried out directly by decomposing all generators of e11 under

sl(5) ⊕ sp(3) ⊕ su(2) and then restricting to sp(3) singlets. For the fields with up to

five space-time indices the invariant generators are identical to those of (g2 ⊕ su(2))+++

but more branchings of the type (4.13) are required to make this manifest, giving a less

transparent derivation.

It is of interest to ask whether the subalgebra s of (f4⊕g2)
+++ defined by sp(3) invari-

ance is identical to (g2⊕su(2))+++. For the fields with up to five space-time indices there is

20That the inclusion relation does not only hold at the level of generators but also at the level of Lie

brackets follows from the Serre relations which can be deduced for the invariant generators from the em-

bedding.
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no difference but one can check by computer analysis that (g2⊕su(2))+++ is in fact a proper

subalgebra of s. By virtue of general characterisation theorems the complexified subalgebra

s is a Borcherds algebra [60].21 Since to date generally only generators with at most D

indices in a decomposition under a sl(D) subalgebra have a supergravity interpretation, we

cannot offer an explanation of this difference here (see [62] for a discussion of this point).

The real form of (g2 ⊕ su(2))+++ follows also from the embedding above: Because the

scalars at level (0, 0) inside the split (f4⊕g2)
+++ which are invariant under sp(3) all belong

to the compact su(2) ⊂ f4, it follows that the A1 node of the diagram of (g2 ⊕ su(2))+++

has to be compact so that the associated summand in the extension process is the compact

su(2).

The construction of (g2 ⊕ su(2))+++ inside (f4 ⊕ g2)
+++ ⊂ e11 also gives a D = 11

origin to the propagating fields of pure N = 2 supergravity in D = 5 as well as of its

possible deformations.

We expect that a similar analysis of the quotient algebra can be carried out in all cases

when the N ≤ 2 theory has a D = 11 origin.

5. Discussion

In this paper we have discussed the extended semi-simple symmetries that play a role in

N ≤ 2 supergravity. In particular, we have put forward a proposal for the extension of

semi-simple Lie algebras, corresponding to the well-known Kac-Moody extensions of simple

Lie algebras and based on analogous reasoning leading to the affine extension as the Geroch

group. In addition we have argued that an SU(2)/SU(2) scalar manifold has to be coupled

to all N = 2 theories without hyper multiplets, such that these fall in the semi-simple

realm as well. Support for these conjectures has been gathered from a number of different

points of view:

• The extended semi-simple Lie algebras give rise to the correct physical degrees of

freedom in the N = 2 supergravity examples discussed.

• They contain the correct generators corresponding to the non-propagating deforma-

tion potentials. In particular, very-extended g2 ⊕ f4 contains the correct deformation

potentials for the coupled theory in D = 5, corresponding to the gauging of a single

isometry of the scalar manifold of the hyper multiplets. Very-extended g2 ⊕ su(2)

reproduces the results of [36] on the deformation potentials of the pure theory in

D = 5, corresponding to the gauging of a U(1) ⊂ SU(2) of the R-symmetry group.

Finally, both very-extended algebras contain the correct deformation potentials in

D = 3, where the gaugings have been classified in [54].

• Very-extended g2 ⊕ su(2) predicts the possibility to include a triplet of top-forms in

D = 5, which is checked successfully in appendix A. The supersymmetry variations

of these five-forms seem to be of a novel type.

21This is similar to the way in which the pure N = 4 algebra d+++
8 is contained in a Borcherds subalgebra

of e11 [61]. There the Borcherds algebra can be constructed by keeping only tensor representations of a d10

common to e11 and d+++
8 whereas here we have a stronger restriction to sp(3) invariant tensors.
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• Both very-extended (quotient) algebras are subalgebras of e11, corresponding to the

truncation of N = 8 supergravity to the associated N = 2 theories.

We would like to emphasise that our results can be applied to all semi-simple D = 3 cosets.

As we have argued, the homogeneous scalar manifolds will generically be semi-simple with

two simple factors for N = 2 supergravity. In addition, the simple algebras have to be

augmented with an su(2) factor.

An additional illustration of the latter is provided by pure N = 2 supergravity in four

dimensions. Upon reduction to three dimensions this gives rise to the coset

MV =
SU(2, 1)

S(U(2) × U(1))
. (5.1)

The point is that su(2, 1)+++ does not contain any three-forms when decomposed with

respect to SL(4) and hence predicts no gaugings of this four-dimensional supergravity.

However, it is known that one can gauge a U(1) in the SU(2) part of the R-symmetry

group [63, 64]. One can not gauge the separate U(1) factor of HR = SU(2) × U(1) as

the vector and its Hodge dual transform as a doublet under it. We have checked that

very-extended su(2, 1) ⊕ su(2) contains deformation potentials transforming as an SU(2)

triplet and a U(1) doublet, consistent with this gauging. In addition it predicts an SU(2)

triplet of two-forms with vanishing field strengths and two SU(2) triplets of four-forms in

this theory. It would be interesting to include these explicitly, similar to [36].

We expect the same phenomenon of extended semi-simple Lie algebras to play a role

in N = 1 supergravities. These theories reduce to a Kähler scalar manifold22 in three

dimensions [66, 67], homogeneous examples of which can be found in e.g. [68]. An important

point is that the product of two Kähler manifolds is again a Kähler manifold. Therefore

one can couple any number of homogeneous spaces to N = 1 supergravity. Such products

appear naturally in e.g. the truncation from N = 2 to N = 1 [69]. Hence, for N = 1

supergravity, in three dimensions one can have semi-simple algebras of isometries with

more than two factors: ga⊕gb⊕gc⊕ . . .. The extensions of such semi-simple algebras were

outlined in section 2.

Due to the sum of simple factors in g, one can argue that the algebra of isometries

of homogeneous scalar manifolds is generically semi-simple for N = 1 supergravity. This

is similar to what we found for N = 2 supergravity. However, the N = 2 situation is

different in that one can not add any number of homogeneous spaces, as the product of

quaternionic-Kähler spaces is not quaternionic-Kähler itself (except when they are hyper-

Kähler spaces, which are not allowed in N = 2 supergravity). Hence one can only couple

two such spaces, associated with N = 2 vector and hyper multiplets.

An example of a semi-simple algebra appears in N = 1, D = 4 supergravity coupled to

a chiral multiplet. After reduction to three dimensions this theory corresponds to the coset

G

H
=

SL(2)

SO(2)
× SL(2)

SO(2)
. (5.2)

22The additional topological constraint requiring it to be Hodge-Kähler [65] is not important here.
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In line with the previous discussion it consists of a product of Kähler manifolds. The hid-

den symmetry group is therefore semi-simple: SL(2) × SL(2) ≃ SO(2, 2). This theory and

the very-extended algebra (sl(2) ⊕ sl(2))+++ are discussed in detail in appendix B. Based

on covariance with respect to so(2, 2+nV), we confirm that the very-extended semi-simple

algebra (sl(2) ⊕ sl(2))+++ contains exactly the generators one would expect.

However, in addition to the appearance of semi-simple symmetries, we also expect a

number of new features to appear for N = 1. This can be seen from the three-dimensional

classification of [54]. A first point is that one has to incorporate the SO(2) R-symmetry

group as a central extension of the isometry group. Furthermore, in contrast to N ≥ 2,

there is no linear constraint on the possible gaugings for N = 1. Finally, there are defor-

mations that do not correspond to a gauging but rather to the addition of a superpotential.

Therefore we would not expect e.g. (sl(2)⊕sl(2))+++ to describe all the deformations of the

N = 1 theory. It remains to be seen to what extent all N = 1 features can be reproduced

from the Kac-Moody side.

Similarly, one could consider supergravity theories with six supersymmetries. These

theories have a single quaternionic-Kähler manifold in three dimensions [25]. The R-

symmetry group is HR = SO(3) and hence these do not suffer from the R-symmetry prob-

lems discussed. Therefore one could expect that very-extended simple Lie algebras, such

as g+++
2 , incorporate both the physical and the non-propagating degrees of freedom of this

theory. However, it turns out that for these theories there is no linear constraint on the pos-

sible gaugings either [54] and hence the Kac-Moody correspondence remains unclear as well.

Finally, the discussion so far has been concerned with the correspondence between

supergravity and (quotients of) Kac-Moody algebras to N ≤ 2 theories with homogeneous

spaces. More specifically, we have restricted ourselves to homogeneous scalar manifolds

with semi-simple groups of isometries. Interesting future research would be to investigate

the extended algebras associated to homogeneous but non-semi-simple groups, or even to

venture into the realm of non-homogeneous scalar manifolds.

Besides these interesting points regarding the correspondence for the bosonic sectors

of various supergravity theories it would be worthwhile to extend our new cases also to the

fermionic sector. It is known that the maximally supersymmetric theories in D = 11 and

D = 10 have propagating fermionic degress of freedom which can be grouped into finite-

dimensional (unfaithful) representations of K(E11) [70, 33, 34] and also the half-maximal

case has been analysed [71]. We strongly expect that the compact subalgebras of the quo-

tient algebras presented here will also admit finite-dimensional spinor representations which

correspond to the fermionic degrees of freedom of the various N ≤ 2 theories they belong to.
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A. Five-forms in pure and simple D = 5 supergravity

In [36] it has been analysed on which higher-rank potentials the supersymmetry algebra of

pure and simple D = 5 supergravity can be analysed. We will briefly review their results

for the ungauged case and then show that it is possible to introduce a further extension.

All conventions are identical to [36] where more details can be found.

In the standard formulation the supersymmetry algebra is realised on the metric, a

gravitino and a vector. Their supersymmetry transformations are given by

δeµ
m =

1

2
ǭiΓmψµi ,

δψµi = Dµǫi +
1

4
√

6
i(Γµ

νρ − 4δµ
νΓρ)Fνρǫi ,

δAµ = −
√

6

4
iǭiψµi , (A.1)

where i is the SU(2) R-symmetry index. These satisfy the commutator

[δ1, δ2] = δgct + δLorentz + δsusy + δgauge + δL , (A.2)

where the first four terms on the right hand side are transformations with the usual action

on the fields and parameters given by

ξµ =
1

2
ǭi1Γ

µǫ2i , Λmn = ξνων
mn +

1

4
√

6
iǭi1(Γ

mnpq + 4gmpgnq)Fpqǫ2i ,

ηi = −ξµψµi , λ(0) = −
√

6

4
iǭi1ǫ2i − ξνAν , (A.3)

while δL imposes a possible first-order field equation (e.g. for the gravitino) which takes

the form of a duality relation for the bosons.

In [36] it was shown that the supersymmetry algebra can also be realised on higher-rank

gauge potentials with the following supersymmetry transformations:

δBµν = b1ǭ
iΓ[µψν]i + b2A[µδAν] ,

δCij
µνρ = ic1ǭ

(iΓ[µνψ
j)
ρ] ,

δDij
µνρσ = d1ǭ

(iΓ[µνρψ
j)
σ] + d2A[µδC

ij
νρσ] , (A.4)

provided b1 = 3
4b2 = −1

2

√
6 and c1d2 = −

√
6d1. The latter two are symmetric in their

SU(2) indices and subject to the symplectic constraint

Cij − C∗
ij = Dij −D∗

ij = 0 . (A.5)
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They transform as SU(2) triplets. On the right hand side of the algebra we find the gauge

transformations

δgaugeBµν =−2∂[µλ
(1)
ν] −

1

3

√
6λ(0)Fµν , λ

(1)
ν =−Bνσξ

σ +
1

4

√
6ǭi1Γνǫ2i −

1

2
iǭi1ǫ2iAν ,

δgaugeC
ij
µνρ = −3∂[µλ

(2)ij
νρ] , λ(2)ij

µν =−Cij
µνρξ

ρ +
1

3
ic1ǭ

(i
1 Γµνǫ

j)
2 , (A.6)

δgaugeD
ij
µνρσ = −4∂[µλ

(3)ij
νρσ] , λ(3)ij

µνρ =−Dij
µνρσξ

σ−1

4
d1

(

ǭ
(i
1 Γµνρǫ

j)
2 −

√
6iA[µǭ

(i
1 Γνρ]ǫ

j)
2

)

.

and the following first-order field equations:

δLBµν = −(3∂[µBνρ] −
√

6A[µFνρ] −
1

2

√−gεµνρσλF
σλ)ξρ ,

δLC
ij
µνρ = −(4∂[µC

ij
νρσ])ξ

σ , δLD
ij
µνρσ = −(5∂[µD

ij
νρστ ])ξ

τ , (A.7)

The first line identifies B as the dual of A while the second line implies the vanishing of

the field strengths of Cij and Dij.

As shown in [36], it is impossible to realise supersymmetry on an independent five-form

with a leading term that is bilinear in the gravitino and the supersymmetry parameter. The

only such possibility leads to the Levi-Civita tensor and hence a dependent field. However,

it is in fact possible to introduce an SU(2) triplet of five-forms whose supersymmetry vari-

ation contains only subleading terms that are trilinear in the gravitino, the supersymmetry

parameter and a lower-rank gauge potential. Therefore this supersymmetry variation will

vanish in a linearised approximation. More precisely, their supersymmetry transformation

is given by

δEij
µνρστ = e3B[µνδC

ij
ρστ ] + e4A[µδD

ij
νρστ ] . (A.8)

The supersymmetry algebra closes on these five-forms provided c1e3 = 3
2d1e4 and up to

the gauge transformation

δgaugeE
ij
µνρστ = −5∂[µλ

(4)ij
νρστ ] ,

λ(4)ij
µνρσ = −E(ij)

µνρστ ξ
τ +

1

5
d1e4(

3

2
iB[µν ǭ

(i)
1 Γρσ]ǫ

j)
2 +A[µǭ

(i)
1 Γνρσ]ǫ

j)
2 ) . (A.9)

Note the absence of an independent four-form gauge transformation that is quadratic in

the supersymmetry parameters and does not contain other gauge potentials. This follows

from the unusual form of the supersymmetry transformations (A.8). It seems that such

transformation properties have not been encountered before and are only possible for space-

time filling top-forms.

B. A semi-simple example in N = 1 supergravity

B.1 General aspects

As an illustration of the general discussion in the conclusions we will consider a particular

semi-simple algebra that appears naturally in N = 1 supergravity. As is well known, the
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D HR G H

4 SO(2) SO(nV) × SL(2) SO(nV) × SO(2)

3 SO(2) SO(2, 2 + nV) SO(2) × SO(2 + nV)

Table 3: The global symmetries G and their compact subgroups H of a class of N = 1 theories,

consisting in four dimensions of the graviton, one chiral and nV vector multiplets.

D (D − 1)-forms D-forms

4 (2, ) ⊕ (2, ) (3, 1) ⊕ (3, ) ⊕ (3, ) ⊕ ⊕ ⊕

3 1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Table 4: The deformation and top-form potentials in terms of irreps of G = SO(2, 2+nV) for this

class of N = 1 supergravities.

bosonic sector of the pure four-dimensional theory reduces to the (Ehlers) scalar coset

SL(2)/SO(2) in three dimensions. Many aspects of hidden symmetries were first discussed

in this context. Instead of the pure theory in four dimensions we consider the coupling

to a chiral multiplet, whose bosonic sector consists of two scalars that can be taken to

parametrise the scalar coset SL(2)/SO(2) as well. Consequently we will end up with the

product of these two simple factors in three dimensions.

It will be useful to extend this theory further by adding nV vector multiplets with

minimal couplings. The symmetries of these theories and their dimensional reductions can

be found in table 3. The theory without vectors, i.e. nV = 0, can be seen as a natural limit

of the generic case with nV ≥ 1. However, note that that while so(2, 2+nV) is semi-simple

for nV = 0, it is simple for nV ≥ 1. Hence the very-extensions of the latter are well known.

The corresponding (D − 1)- and D-form potentials23 are given in table 4 in terms of the

global symmetry groups of these theories.

The derivation of the representations in table 4 is not valid for nV = 0, since the

corresponding Lie algebra is semi-simple: so(2, 2) ≃ sl(2) ⊕ sl(2). From the supergravity

viewpoint, however, one would of course expect a ‘covariant’ answer in nV . Therefore one

has the following consistency check on any proposal for the very-extended sl(2)⊕ sl(2): its

four- and three-dimensional decompositions should give rise to the (D − 1)- and D-forms

of the above table in the limit where nV vanishes. We will now discuss this extended

semi-simple Lie algebra.

B.2 Very-extended sl(2) ⊕ sl(2) and the N = 1 theory

The decomposition of very-extended sl(2) ⊕ sl(2) with respect to sl(4), i.e. in four dimen-

sions, is illustrated in figure 10. The resulting list of generators with up to four space-time

23Note that these are identical to the (D−1)- and D-form representations of very-extended SO(8, 8+nV),

corresponding of half-maximal supergravity [20], as these are different real forms of the same algebra.
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1 2

3 4

5 6

Figure 10: (sl(2) ⊕ sl(2))+++ decomposed as sl(4) ⊕ sl(2), corresponding to a D = 4 theory with

an SL(2) internal symmetry group.

indices is given in table 10 in appendix C. These can be interpreted to correspond to the

following physical degrees of freedom (at level (l1, l2)):

• (0, 0): the traceless part of the metric, carrying 15 degrees of freedom of which 6 will

be eliminated due to the local Lorentz symmetry,

• (0, 0): the sl(2) scalars, transforming in the adjoint of the internal symmetry and

subject to the local SO(2) symmetry,

• (0, 0): a scalar which provides the trace of the metric,

• (1, 0): a symmetric tensor, which is interpreted as the dual graviton,

• (0, 1): an sl(2) triplet of two-forms, which are interpreted as dual to the scalars.

Again one finds scalars and the dual two-forms in the adjoint of the internal symmetry

group SL(2), while there are only corresponding two physical degrees of freedom. This is

taken care of by the compact SO(2) subgroup, which eliminates one scalar and imposes a

linear constraint on the three-form field strengths.

In this way the above generators exactly coincide with the physical field content. Of

the additional generators corresponding to non-propagating degrees of freedom, the purely

anti-symmetric ones are

• (0, 2): an sl(2) triplet of four-forms,

while the very-extended algebra does not contain any three-forms. These representations

of three- and four-forms coincide with the predictions of table 4 for nV = 0. As far as we

are aware, the possibility to include these four-forms in N = 1, D = 4 supergravity has

not been discussed in the literature.

Next we will discuss the decomposition of (sl(2) ⊕ sl(2))+++ with respect to sl(3),

i.e. in three dimensions. The corresponding Dynkin diagram is given in figure 11, while

the resulting list of generators can be found in table 11 in appendix C. It can be verified

that these lead to exactly the correct physical degrees of freedom of the theory. Again the

matching requires the quotienting out of one of the central charges appearing at level (0, 0)

with multiplicity 2. In addition, the following anti-symmetric non-propagating degrees of

freedom are present in the very-extended algebra:
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Figure 11: (sl(2)⊕ sl(2))+++ decomposed as sl(3)⊕ sl(2)⊕ sl(2), corresponding to a D = 3 theory

with an SO(2, 2) internal symmetry group.

• l = (1, 1), (2, 0) and (0, 2): two-forms in the so(2, 2) representations 1 ⊕ 1 ⊕ 9,

• l = (2, 1) and (1, 2): three-forms in the so(2, 2) representations 3 ⊕ 3 ⊕ 9 ⊕ 9.

Comparing with table 4, the representations of two-forms are again correct. The same

holds for the three-forms when a subtlety unrelated to the focus of this paper has been

taken into account.24

C. Decomposition tables

Below we give the relevant decompositions with respect to regular sl(D)r subalgebras of the

Kac-Moody algebras associated to very-extended semi-simple Lie algebras. The number of

Cartan subalgebra scalars has been adjusted according to the quotient procedure described

in section 2. In all cases we give all the generators at positive levels with up to and including

D space-time indices. The tables were obtained by using the SimpLie program [72] and

Mathematica code by the first author which was also used for [16].

The different columns in the tables are as follows:

• l is the level in the decomposition,

• pr are the Dynkin labels of the regular (gravity) subalgebra,

• pi are the Dynkin labels of the internal symmetry subalgebra (if present),

24The general formulae would predict an additional 1. However, an additional requirement on the three-

forms is that their so(2, 2 + nV) representations should be contained in the product of the representations

of the vectors and two-forms:

⊗ (1 ⊕ ⊕ ) . (B.1)

For nV large enough this contains the representations of three-forms in table 4. For nV = 0 the anti-

symmetric four-form representation cannot be generated, however. Hence the missing singlet in very-

extended sl(2) ⊕ sl(2) is not a problem: it should not be there, and indeed is not. In fact, a missing

top-form could be a more general phenomenon: we are aware that there is a similar mismatch with respect

to the generic formulae for so(4, 4)+++ in D = 6 and so(4, 3)+++ in D = 5. We thank Eric Bergshoeff and

Teake Nutma for discussions on this point.
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• ‘vector’ is the root vector α in the algebra in whose root space the lowest weight

vector of the representation lies,

• α2 is the norm of the root vector,

• dr is the dimension of the regular subalgebra representation,

• di is the dimension of the internal subalgebra representation,

• µ is the outer multiplicity of the representation listed in a given row,

• ind is the number of space-time indices of this representation.

l pr pi vector α α2 dr di µ ind

0 0 0 0 0 0 0 0 0 1 -2 -4 -3 -2 0 0 0 0 0 0 12 1 52 1 0

0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 12 24 1 1 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 12 10 52 1 3

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 4 5 1 1 1

1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 0 4 5 52 1 4

0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 4 10 1 1 2

1 2 1 0 0 1 0 0 0 1 0 0 0 0 1 2 1 1 1 0 4 24 52 1 5

1 2 0 0 0 0 0 0 0 1 0 0 0 0 1 2 2 2 2 1 -8 1 52 1 5

0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 12 40 1 1 3

0 4 1 0 1 0 0 0 0 0 0 0 0 0 0 4 2 1 0 0 4 45 1 1 4

0 5 0 1 1 0 0 0 0 0 0 0 0 0 0 5 3 1 0 0 4 75 1 1 5

0 5 1 0 0 1 0 0 0 0 0 0 0 0 0 5 3 2 1 0 -8 24 1 1 5

Table 5: sl(5)r ⊕ (f4)i representations in (g2 ⊕ f4)
+++

l pr pi vector α α2 dr di µ ind

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 12 8 1 1 3

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -3 -2 0 0 0 12 1 14 1 0

0 0 0 0 0 0 0 1 0 0 -2 -4 -3 -2 0 0 0 0 0 0 12 1 52 1 0

0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 12 3 14 1 1

0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 6 4 2 1 0 -12 3 1 1 2

0 2 0 1 0 0 0 0 2 0 0 0 0 0 0 2 2 2 1 0 4 3 27 1 2

0 2 2 0 0 0 0 0 0 1 0 0 0 0 0 3 2 2 0 0 12 6 14 1 2

1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 12 3 52 1 1

1 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 12 3 728 1 2

2 0 0 1 0 0 0 0 0 0 4 8 6 4 2 0 0 0 1 0 -12 3 1 1 2

2 0 2 0 0 0 0 1 0 0 2 4 3 2 2 0 0 0 0 0 12 6 52 1 2

– 29 –



J
H
E
P
0
7
(
2
0
0
8
)
0
3
5

2 0 0 1 2 0 0 0 0 0 0 2 2 2 2 0 0 0 1 0 12 3 324 1 2

1 2 0 0 0 0 0 1 0 0 0 0 0 0 1 6 4 2 2 1 -24 1 52 1 3

1 2 1 1 0 0 0 1 0 0 0 0 0 0 1 6 4 2 1 0 -12 8 52 1 3

1 2 0 0 0 0 0 1 0 1 0 0 0 0 1 3 2 2 2 1 -12 1 728 1 3

1 2 0 0 0 0 0 1 2 0 0 0 0 0 1 2 2 2 2 1 -8 1 1404 1 3

1 2 1 1 0 0 0 1 0 1 0 0 0 0 1 3 2 2 1 0 0 8 728 1 3

1 2 1 1 0 0 0 1 2 0 0 0 0 0 1 2 2 2 1 0 4 8 1404 1 3

1 2 0 0 0 0 0 1 3 0 0 0 0 0 1 0 1 2 2 1 12 1 4004 1 3

2 1 0 0 0 0 0 0 0 1 4 8 6 4 2 0 0 1 2 1 -24 1 14 1 3

2 1 1 1 0 0 0 0 0 1 4 8 6 4 2 0 0 1 1 0 -12 8 14 1 3

2 1 0 0 0 0 0 1 0 1 2 4 3 2 2 0 0 1 2 1 -12 1 728 1 3

2 1 1 1 0 0 0 1 0 1 2 4 3 2 2 0 0 1 1 0 0 8 728 1 3

2 1 0 0 2 0 0 0 0 1 0 2 2 2 2 0 0 1 2 1 0 1 4536 1 3

2 1 1 1 2 0 0 0 0 1 0 2 2 2 2 0 0 1 1 0 12 8 4536 1 3

2 1 0 0 0 0 1 0 0 1 0 0 0 1 2 0 0 1 2 1 12 1 17836 1 3

Table 6: sl(3)r ⊕ (f4 ⊕ g2)i representations in (g2 ⊕ f4)
+++

l pr pi vector α α2 dr di µ ind

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 12 35 1 1 6

0 0 0 0 0 0 0 0 1 0 -3 -2 0 0 0 0 0 0 0 0 12 1 14 1 0

0 0 0 0 0 0 0 0 0 2 0 0 0 -1 0 0 0 0 0 0 6 1 3 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 12 15 14 1 4

0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 6 6 2 1 1

1 1 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 6 6 28 1 5

0 2 0 1 0 0 0 0 0 2 0 0 0 0 2 1 0 0 0 0 12 15 3 1 2

1 2 1 0 0 0 1 0 1 2 0 0 1 0 2 1 1 1 1 0 12 35 42 1 6

1 2 0 0 0 0 0 0 1 2 0 0 1 0 2 2 2 2 2 1 0 1 42 1 6

1 2 0 0 0 0 0 0 1 0 0 0 1 1 2 2 2 2 2 1 -6 1 14 1 6

0 3 0 0 1 0 0 0 0 1 0 0 0 1 3 2 1 0 0 0 6 20 2 1 3

0 4 1 0 1 0 0 0 0 0 0 0 0 2 4 2 1 0 0 0 12 105 1 1 4

0 4 0 0 0 1 0 0 0 2 0 0 0 1 4 3 2 1 0 0 6 15 3 1 4

0 5 1 0 0 1 0 0 0 1 0 0 0 2 5 3 2 1 0 0 6 84 2 1 5

0 5 0 0 0 0 1 0 0 3 0 0 0 1 5 4 3 2 1 0 6 6 4 1 5

0 5 0 0 0 0 1 0 0 1 0 0 0 2 5 4 3 2 1 0 -6 6 2 1 5

0 6 0 1 0 1 0 0 0 2 0 0 0 2 6 4 2 1 0 0 12 189 3 1 6

0 6 1 0 0 0 1 0 0 2 0 0 0 2 6 4 3 2 1 0 0 35 3 1 6

0 6 1 0 0 0 1 0 0 0 0 0 0 3 6 4 3 2 1 0 -6 35 1 2 6

0 6 0 0 0 0 0 0 0 4 0 0 0 1 6 5 4 3 2 1 6 1 5 1 0

0 6 0 0 0 0 0 0 0 2 0 0 0 2 6 5 4 3 2 1 -12 1 3 2 0

Table 7: sl(6)r⊕(g2⊕sl(2))i representations in (g2⊕f4)
+++
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l pr pi vector α α2 dr di µ ind

0 1 0 0 1 0 -1 -1 -1 -1 6 24 0 1 5

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

1 1 0 0 0 1 0 0 0 0 2 5 0 1 1

2 0 1 0 0 2 1 0 0 0 2 10 0 1 2

3 1 1 0 0 3 1 0 0 0 6 40 0 1 3

4 1 0 1 0 4 2 1 0 0 2 45 0 1 4

5 0 1 1 0 5 3 1 0 0 2 75 0 1 5

5 1 0 0 1 5 3 2 1 0 -4 24 0 1 5

Table 8: sl(5)r representations in g+++
2

l pr pi vector α α2 dr di µ ind

0 0 1 0 0 1 0 0 0 0 -1 -1 -1 -1 6 24 1 1 5

0 0 0 0 0 0 2 -1 0 0 0 0 0 0 6 1 3 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

1 0 0 0 1 0 2 0 1 0 0 0 0 0 6 10 3 1 3

0 1 1 0 0 0 0 0 0 1 0 0 0 0 2 5 1 1 1

1 1 0 0 0 1 2 0 1 1 1 1 1 0 2 5 3 1 4

0 2 0 1 0 0 0 0 0 2 1 0 0 0 2 10 1 1 2

1 2 1 0 0 1 2 0 1 2 1 1 1 0 2 24 3 1 5

1 2 0 0 0 0 2 0 1 2 2 2 2 1 -4 1 3 1 5

0 3 1 1 0 0 0 0 0 3 1 0 0 0 6 40 1 1 3

0 4 1 0 1 0 0 0 0 4 2 1 0 0 2 45 1 1 4

0 5 0 1 1 0 0 0 0 5 3 1 0 0 2 75 1 1 5

0 5 1 0 0 1 0 0 0 5 3 2 1 0 -4 24 1 1 5

Table 9: sl(5)r ⊕ su(2)i representations in (g2 ⊕ su(2))+++

l pr pi vector α α2 dr di µ ind

0 0 0 0 0 0 1 0 0 -3 -2 0 0 0 6 1 14 1 0

0 0 1 1 0 0 0 0 0 0 0 0 -1 -1 6 8 1 1 3

0 0 0 0 2 0 0 -1 0 0 0 0 0 0 6 1 3 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0

1 0 1 0 2 0 0 0 1 0 0 0 0 0 6 3 3 1 1

0 1 1 0 0 0 1 0 0 0 0 1 0 0 6 3 14 1 1

1 1 0 1 2 0 1 0 1 0 0 1 1 0 6 3 42 1 2

2 0 2 0 2 0 0 1 2 0 0 0 0 0 6 6 3 1 2

2 0 0 1 0 0 0 2 2 0 0 0 1 0 -6 3 1 1 2

0 2 2 0 0 0 1 0 0 3 2 2 0 0 6 6 14 1 2
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0 2 0 1 0 2 0 0 0 2 2 2 1 0 2 3 27 1 2

0 2 0 1 0 0 0 0 0 6 4 2 1 0 -6 3 1 1 2

2 1 1 1 2 0 1 1 2 0 0 1 1 0 0 8 42 1 3

2 1 1 1 0 0 1 2 2 0 0 1 1 0 -6 8 14 1 3

2 1 0 0 2 0 1 1 2 0 0 1 2 1 -6 1 42 1 3

2 1 0 0 0 0 1 2 2 0 0 1 2 1 -12 1 14 1 3

1 2 0 0 2 3 0 0 1 0 1 2 2 1 6 1 231 1 3

1 2 1 1 2 2 0 0 1 2 2 2 1 0 2 8 81 1 3

1 2 1 1 2 0 1 0 1 3 2 2 1 0 0 8 42 1 3

1 2 0 0 2 2 0 0 1 2 2 2 2 1 -4 1 81 1 3

1 2 0 0 2 0 1 0 1 3 2 2 2 1 -6 1 42 1 3

1 2 1 1 2 0 0 0 1 6 4 2 1 0 -6 8 3 1 3

1 2 0 0 2 0 0 0 1 6 4 2 2 1 -12 1 3 1 3

3 0 3 0 2 0 0 2 3 0 0 0 0 0 6 10 3 1 3

3 0 1 1 2 0 0 2 3 0 0 0 1 0 -6 8 3 1 3

3 0 1 1 0 0 0 3 3 0 0 0 1 0 -12 8 1 1 3

0 3 1 1 0 3 0 0 0 3 3 3 1 0 6 8 77 1 3

0 3 3 0 0 0 1 0 0 6 4 3 0 0 6 10 14 1 3

0 3 0 0 0 1 1 0 0 4 3 3 2 1 -4 1 64 1 3

0 3 1 1 0 2 0 0 0 5 4 3 1 0 -4 8 27 1 3

0 3 1 1 0 0 1 0 0 6 4 3 1 0 -6 8 14 1 3

0 3 0 0 0 2 0 0 0 5 4 3 2 1 -10 1 27 1 3

0 3 0 0 0 0 1 0 0 6 4 3 2 1 -12 1 14 1 3

0 3 1 1 0 1 0 0 0 7 5 3 1 0 -10 8 7 1 3

0 3 1 1 0 0 0 0 0 9 6 3 1 0 -12 8 1 1 3

Table 10: sl(3)r ⊕ (g2 ⊕ su(2))i representations in (g2 ⊕
su(2))+++

l pr pi vector α α2 dr di µ ind

0 0 1 0 1 0 0 0 0 -1 -1 -1 2 15 1 1 4

0 0 0 0 0 2 -1 0 0 0 0 0 2 1 3 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

1 0 0 1 0 2 0 1 0 0 0 0 2 6 3 1 2

0 1 2 0 0 0 0 0 1 0 0 0 2 10 1 1 2

1 1 1 0 1 2 0 1 1 1 1 0 0 15 3 1 4

2 0 0 2 0 2 1 2 0 0 0 0 2 20 3 1 4

2 0 1 0 1 0 2 2 0 0 1 0 -2 15 1 1 4

2 0 0 0 0 2 1 2 0 1 2 1 -2 1 3 1 4

0 2 2 1 0 0 0 0 2 1 0 0 2 45 1 1 4

Table 11: sl(4)r⊕sl(2)i representations in (sl(2)⊕sl(2))+++
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l pr pi vector α α2 dr di µ ind

0 0 1 1 0 0 0 0 0 0 -1 -1 2 8 1 1 3

0 0 0 0 0 2 0 0 -1 0 0 0 2 1 3 1 0

0 0 0 0 2 0 -1 0 0 0 0 0 2 1 3 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

1 0 1 0 2 0 0 1 0 0 0 0 2 3 3 1 1

0 1 1 0 0 2 0 0 0 1 0 0 2 3 3 1 1

1 1 0 1 2 2 0 1 0 1 1 0 2 3 9 1 2

2 0 2 0 2 0 1 2 0 0 0 0 2 6 3 1 2

2 0 0 1 0 0 2 2 0 0 1 0 -2 3 1 1 2

0 2 2 0 0 2 0 0 1 2 0 0 2 6 3 1 2

0 2 0 1 0 0 0 0 2 2 1 0 -2 3 1 1 2

2 1 1 1 2 2 1 2 0 1 1 0 0 8 9 1 3

2 1 1 1 0 2 2 2 0 1 1 0 -2 8 3 1 3

2 1 0 0 2 2 1 2 0 1 2 1 -2 1 9 1 3

2 1 0 0 0 2 2 2 0 1 2 1 -4 1 3 1 3

1 2 1 1 2 2 0 1 1 2 1 0 0 8 9 1 3

1 2 1 1 2 0 0 1 2 2 1 0 -2 8 3 1 3

1 2 0 0 2 2 0 1 1 2 2 1 -2 1 9 1 3

1 2 0 0 2 0 0 1 2 2 2 1 -4 1 3 1 3

3 0 3 0 2 0 2 3 0 0 0 0 2 10 3 1 3

3 0 1 1 2 0 2 3 0 0 1 0 -2 8 3 1 3

3 0 1 1 0 0 3 3 0 0 1 0 -4 8 1 1 3

0 3 3 0 0 2 0 0 2 3 0 0 2 10 3 1 3

0 3 1 1 0 2 0 0 2 3 1 0 -2 8 3 1 3

0 3 1 1 0 0 0 0 3 3 1 0 -4 8 1 1 3

Table 12: sl(3)r ⊕ sl(2)i ⊕ sl(2)i representations in (sl(2)⊕
sl(2))+++
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